
LNGS/TC-02/06
June 2006

�
�
�

�
�
�

�
�
�
��
�
�
��
�
�
���

��
��
��
��
��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
��
��

��
��
��

�
�
�

�
�
�

V-DAS (A Versatile Data Acquisition software): The

interface to the VME bus and the configuration file

interpreter

M. Di Paolo Emilioa,b, S. Stalioa,

INFN - Laboratori Nazionali del Gran Sasso

INFN - Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali del Gran Sasso

LNGS/TC-02/06
June 2006

V-DAS (A Versatile Data Acquisition software): The

interface to the VME bus and the configuration file

interpreter

M. Di Paolo Emilioa,b, S. Stalioa,

a INFN, Laboratori Nazionali del Gran Sasso Assergi (AQ) - Italy
b Dipartimento di Fisica - Universita’ degli studi dell’Aquila - Italy

Abstract

A new data acquisition system (DAQ) named V-DAS and based on the VME bus
is presented. The system has been developed for the data acquisition system of the
gravitational antennas belonging to the ROG group. In this article we will describe
the software for the communication with the VME bus and the management of the
VME boards by means of a text file (configuration file).

1 Introduction

V-DAS is a software written using the C language for the management of VME based
DAQ systems. It has been developed at Laboratori Nazionali di Frascati and at Laboratori
Nazionali del Gran Sasso. The VME bus (Versa Module Europa) is a flexible open-ended
bus system based on the Eurocard standard. It was introduced by Motorola, Phillips,
Thompson, and Mostek in 1981. VME bus was intended to be a flexible environment
supporting a variety of computing intensive tasks, and is now a very popular protocol
in the computer industry. It is defined by the IEEE 1014-1987 standard. The system is
modular and follows the Eurocard standard. VME card cages contain 21 slots, the first
of which must be used as a crate manager.
The idea that led us to the realization of V-DAS has been the necessity of creating, start-
ing from the vme universe drivers and libraries for the VME bus and the standard C
libraries, a new set of functions and structures that assures the easy management of VME
based DAQ systems (figure 1).
V-DAS has been originally developed for the acquisition of data generated by the gravita-
tional antennas (Nautilus and Explorer) belonging to the ROG (www.lnf.infn.it/esperimenti/rog)
group. The system architecture relies on a VME crate managed by an Intel-based crate
controller running the Linux operating system[1].

2 V-DAS architecture

V-DAS is composed of 5 subsystems, each having a specific function:

• VME bus interface: implements the communication with the boards mounted in
the VME crate.

• Data writing: takes care of writing acquired data on structured data files.

• Configuration file interpreter: reads and parses the configuration file and sets up
the DAQ.

• Error handler: manages errors that may show up during data taking (network prob-
lems, VME bus errors, disk access problems, ...)

• Network data transfer manager: takes care of transferring acquired data from the
VME crate manager to an optional data storage host via an Ethernet connection.

3 The interface to the VME bus

The functions and data structures implemented in this module of the V-DAS software
control the initialization of the VME bus, data reading and writing from/on any register

2

VME libraries & C standard libraries

Software for the interface to the VME bus

read_vme(…)
write_vme(…)

Reads the contents of a

register Writes a data word of a

register

….. …..

Functions

and

structures

Figure 1: Composition of the software for the interface to the VME bus

or memory area, the execution of multiple operations on different register and other an-
cillary operations.

3.1 The data structure

In V-DAS all the registers that can be accessed on the VME bus are organized in a hierar-
chic object structure. This structure is made of components (the lower level), equipments
and triggers. The component object keeps all the information that is needed in order to
fully identify a VME bus data register (or memory area). The equipment object is a list
of components. The trigger object is a list of equipments.

3.1.1 The component object

The component object is defined by the following data structure:

3

typedef struct
{
char module[40];
char regname[40];
char label[50];
char dw[20];
char action[20];
char am[20];
unsigned long base;
unsigned long offset;
unsigned long size;
int bus;
uint8 t ∗value read8; (for a data width of 1 byte)
uint16 t ∗value read16; (for a data width of 2 byte)
uint32 t ∗value read32; (for a data width of 4 byte)
uint64 t ∗value read64; (for a data width of 8 byte)
unsigned long value to write;
unsigned long expected value;
vme master handle t dma handle;
vme dma handle t dma handle;
} vme component;

The value of the module variable represents the name of the VME board to which the
register belongs. The regname variable represents the VME register name, while the label
variable identifies the component. The dw variable identifies the data width. The am
variable identifies the type of VME bus access (Address Modifier). The action variable
identifies the type of operation to be performed on the registers, accepted values are:

• read: read data register (or memory area). The content of the register is saved in
the value read variable.

• write: write data (found on the value field) on the selected register.

• read verify: read data register and compare the result with the value of the value expected
parameter.

• read loop: repeat readout of the data register until the result is equal to the value
of the value expected parameter.

The handle variable identifies the VME register bus, while the dma handle variable iden-
tifies the VME bus memory area if the component represents a DMA register.
The VME board is identified by a base address (hexadecimal) which is saved in the base
parameter. Each register is identified by an offset which is the offset of the register address
with respect to the base address. This value is saved in the offset parameter. Finally the

4

incremental number of the VME crate to which the crate controller belongs is saved in
the bus variable.
The vme component list data structure contains a list of all declared components.

typedef struct
{ vme component components[MAX NUM COMPONENTS];
int num elements;
} vme component list;

The number of declared components is saved in the num elements variable. Each
register is described in the components array of vme component objects.
MAX NUM COMPONENTS is a constant that defines the maximum number of allowed
components.

3.1.2 The equipment object

The equipment object is defined by the vme equipment data structure:

typedef struct
{
int element[MAX NUM COMPONENTS IN EQUIPMENT];
int size;
char name[120];
time t time;
}vme equipment;

The number of components of an equipment is saved in the size variable. The name
variable is an arbitrary string. The list of components contained in an equipment is kept
in the element array. The time variable is an integer that controls the execution period
of each equipment. If time is -1 the equipment is executed only once at the beginning
of data taking. If time is 0 the equipment is executed whenever possible. If time has a
positive value, this value represents the period (in seconds) of the equipment execution.
MAX NUM COMPONENTS IN EQUIPMENTS is a constant. It defines the maximum
number of components that an equipment can contain.

The vme equipment list data structure contains a list of all declared equipments.

5

typedef struct
{
vme equipment equipment[MAX NUM EQUIPMENT];
int num elements;
}vme equipment list;

The number of equipments is saved in the num elements variable. All equipments are
described in the equipment array of vme equiment objects.
MAX NUM EQUIPMENT is a constant that defines the maximum number of equipments.

3.1.3 The trigger object

The vme trigger structure contains a full description of a trigger. The number of equip-
ments belonging to a trigger is saved in the size variable. The name variable is an
arbitrary string. The list of equipments contained in the trigger is kept in the equip list
array. The time variable is an integer that controls the execution period of each trigger.
If time is -1 the trigger is executed only once at the beginning of data taking. If time
is 0 the trigger is executed whenever possible. If time has a positive value, this value
represents the period (in seconds) of the trigger execution. MAX NUM EQUIPMENTS
is a constant that defines the maximum number of equipments that a trigger can contain.

typedef struct
{
char name[120];
int size;
vme equipment equip list[MAX NUM EQUIPMENT];
time t time;
}vme trigger;

The vme trigger list data structure is a list of all declared triggers.

typedef struct
{
vme trigger trigger[MAX NUM TRIGGER];
int num elements;
}vme trigger list;

6

The number of triggers is saved in the num elements variable. Each trigger is described
in the trigger array of vme trigger objects. MAX NUM TRIGGER is a constant that
defines the maximum accepted number of triggers.

3.2 Basic functions

We will describe in detail the most important V-DAS functions that permit reading and
writing on VME bus registers.

vme bus handle t init bus vme(vme bus handle t handle)

The init bus vme() function initializes the VME bus. It creates a pointer (handle)
that identifies the bus. The function returns the pointer to the initialized bus.
After initializing the VME bus, a ”window” must be created for each component :

vme component create vme window(vme bus handle t handle,
vme component reg)

The create vme window() function creates a ”window” for the reg object of type
vme component. The ”window” is a software interface that permits access to the reg
data register. The bus is identified by the handle variable. The function returns a
vme component object.
This operation is fundamental and it must be performed before accessing any register.

The VME ”window” needs then to be mapped to a memory location on the acquisition
computer. This operation is performed by the map vme window() function.

vme component map vme window(vme bus handle t handle,
vme component reg

This function can only map single word registers (not DMA memory areas) and returns
a vme component object. The map vme window() function is usually run only one time
for each component during data acquisition.

7

VME board VME INTERFACE

VME bus

COMPUTER

User

vme_bus_handle_t handle

register

register

register

register

register register

: window

Figure 2: VME window

After running the create vme window() function and the map vme window() function on
a register, this register is ready for reading or writing.

3.3 Functions for reading and writing on registers

The read vme() function reads data from a VME register. All access parameters are stored
in the reg object. Data read is also stored in the reg object. Accepted read operation are:
read, read verify and read loop.

int read vme(vme bus handle t handle, vme component reg)

The write vme() function writes data stored in the value to write variable belonging
to the reg object, to the register pointed to by the reg object itself.

int write vme(vme component reg)

The read dma() function reads data present in the reg DMA register (memory area).
The function returns a vme component object. Data will be saved in the value read
pointer belonging to the vme component structure.

8

vme component read dma(vme bus handle t handle,
vme component reg

3.4 Functions for executing equipments

An equipment is made of components. The following functions permit the execution of an
equipment ; this means sequentially performing the operations defined by the action field
of each component belonging to the equipment itself.
The execute equipment() function performs all the operations listed in the eqp equipment
ignoring the time variable contained in the vme equipment. Parameters for this function
are: the pointer to the bus (handle), the equipment (eqp) and the list of all declared
components (component list).

int execute equipment(vme bus handle t handle,
vme component list component list, vme equipment eqp)

The execute vmelist equipment() function executes all equipments listed in the eqp list
object. Other parameters are: the pointer to the bus (handle), the list of all declared com-
ponents (component list), the list of all declared equipments (eqp list), the index acquisition
and time variables. The index acquisition variable can be 0 or 1. If it is 0 we are in the
pre-acquisition phase, otherwise we are in the acquisition phase. The time variable, only
used during the acquisition phase, represents the time (in seconds) passed since the be-
ginning of data acquisition.

int execute vmelist equipment(vme bus handle t handle,
vme component list component list, vme equipment list eqp list,

time t time,int index acquisition)

3.5 Functions for executing triggers

A trigger is composed by equipments. Executing a trigger means sequentially performing
the operations defined by the action field of each equipment belonging to the trigger itself.
The execute trigger() function performs all the operations defined in a trigger. Parameters
for this function are: the pointer to the bus (handle), the list of all defined components
(component list) and the trigger itself.

9

int execute trigger(vme bus handle t handle,
vme component list component list,vme trigger trig)

The execute vmelist trigger() function executes all declared triggers. Parameters are:
the pointer to the bus (handle), the list of all declared components (component list),
the list of all declared triggers (trig list), the index acquisition and time variables. The
index acquisition variable can be 0 or 1. If it is 0 we are in the pre-acquisition phase,
otherwise we are in the acquisition phase. The time variable, only used during the acquisi-
tion phase, represents the time (in seconds) passed since the beginning of data acquisition.

int execute vmelist trigger(vme bus handle t handle,
vme component list component list, vme trigger list trig list,

time t time, int index acquisition

4 Acquisition run

The DAQ run is managed by the execute vmelist trigger() function. This function executes
all the triggers found in the trig list object taking into account the execution period
parameter that characterizes each trigger in the setup subsection. This execution period
parameter is saved in the time variable of the vme trigger object. In a typical DAQ system
the main program (appendix B) loops on the execute vmelist trigger() function, updating
each time the time variable (time passed since the beginning of data acquisition). This
value is compared to the execution period parameter of each trigger and the decision of
executing the trigger or not is taken.

5 Configuration file interpreter

The whole DAQ system can be controlled by means of a text file (configuration file). In
this file all the components, equipments and triggers are defined. The configuration file
interpreter reads this file and loads the data structures.

5.1 Function for reading the components

The read vmelist components() function reads the components section of the configuration
file whose name is read from the config file parameter. The vme component list structure

10

is loaded.

vme component list ∗read vmelist components(char
config file [MAX LINE LENGTH])

5.2 Function for reading the equipments

The load equipment() function reads the equipment section of the configuration file whose
name is read from the config file parameter. The vme equipment list structure is loaded.
Parameters for this function are the list of all declared components (component list) and
the name of the configuration file (config file).

vme equipment list ∗load equipment(char config file[
MAX LINE LENGTH],vme component list components)

5.3 Function for reading the triggers

The load trigger() function reads the triggers section and the setup section of the con-
figuration file whose name is read from the config file parameter. The vme trigger list
structure is loaded. Parameters for this function are the list of all declared equipments
(equipments) and the name of the configuration file (config file).

vme trigger list ∗load trigger(char
config file[MAX LINE LENGTH],vme equipment list equipments)

References

[1] M. Di Paolo Emilio, S. Stalio V-DAS (A Versatile Data Acquisition Software): The
user interfaces. LNGS/TC-01/06 - June 2006

11

Appendix A: Example of configuration file

//example of configuration file

START_COMPONENT_LIST

startcomp ioreg_verify_1

module=V977

register=register_dummy

dw=VME_D16

am=VME_A24UD

base=0xd00000

offset=0x2a

size=1

bus=1

action=write

value=0xdead

expected_value=0

endcomp

startcomp ioreg_verify_2

module=V977

register=register_dummy

dw=VME_D16

am=VME_A24UD

base=0xd00000

offset=0x2a

size=1

bus=1

action=read_verify

value=0

expected_value=0xdead

endcomp

startcomp start_acq

module=V977

register=singlehit

dw=VME_D16

am=VME_A24UD

base=0xd00000

offset=0x16

size=1

bus=1

action=read_loop

12

value=

expected_value=0x1

endcomp

END_COMPONENT_LIST

START_EQUIPMENT_LIST

starteqp uno

ioreg_verify_1

ioreg_verify_2

endeqp

starteqp due

start_acq

endeqp

END_EQUIPMENT_LIST

START_TRIGGER_LIST

starttrig tre

uno

due

endtrig

END_TRIGGER_LIST

START_ACQ_SETUP_TRIG

tre -1

END_ACQ_SETUP_TRIG

13

Appendix B: Example of main program

int main()

{

vme_component_list a;

vme_equipment_list b;

vme_trigger_list c;

char file[100]="prova.dat";

int i;

vme_bus_handle_t handle;

time_t t1=0;

a=*read_vmelist_component(file);

b=*load_equipment(file,a);

c=*load_trigger(file,b);

handle=init_bus_vme(handle);

for (i=0;i<a.num_elements;i++)

{

a.component[i]=create_vme_window(handle,a.component[i]);

a.component[i]=map_vme_window(handle,a.component[i]);

}

execute_vmelist_trigger(handle,a,c,t1,0);

while(1)

{

t1=time(0)-t1;

execute_vmelist_trigger(handle,a,c,t1,1);

}

}

14

