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Abstract

Based on recent improvements of the supernova electron antineutrino emis-
sion model, we update the limit on neutrino mass from the SN1987A data
collected by Kamiokande-II, IMB and Baksan. We derive the limit of 5.8 eV
at 95% CL, that we show to be remarkably insensitive to the astrophysical
uncertainties. Also we evaluate the ultimate mass sensitivity of this method
for a detector like Super-Kamiokande. We find that the bound lies in the
sub-eV region, 0.8 eV at 95 % CL being a typical outcome, competitive with
the values that are presently probed in laboratory. However, this bound is
subject to strong statistical fluctuations, correlated to the characteristics of
the first few events detected. We briefly comment on the prospects offered
by future detectors.
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1. Introduction

The interest in measuring the, presently unknown, absolute mass scale
of neutrinos has been renewed by the experimental evidences of neutrino
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oscillation [1, 2].

It is known since long [3] that neutrinos from supernova can contribute
valuable information on the mass of neutrinos. In fact, the stringent limit of
mν < 5.7 eV at 95 % CL has been obtained by Loredo and Lamb [4] using
SN1987A neutrinos [5, 6, 7]; another important result in this connection is
the one obtained by Nardi and Zuluaga, who argue that future supernova
will permit us to probe the sub-eV region [8, 9, 10].

In the present paper, we aim at updating both these results: namely, we
improve the bound on neutrinos from SN1987A and we evaluate the ultimate
sensitivity of the method to probe neutrino masses introduced by Zatsepin.

2. The limit from SN1987A

2.1. The reasons of an updated analysis

The limit from SN1987A [4] is quoted in the PDG report but it is consid-
ered “no longer comparable with the limits from tritium beta decay” [11]. In
fact, in the 3 neutrino context it can be compared with the limit obtained in
laboratory [12, 13]; the value of the latter is 2 eV, about three times tighter
than the former.

Nevertheless, the analysis on neutrino mass of Lamb and Loredo [4] main-
tains a big methodological merit, being the only one based on a theoretically
motivated model for the emission of neutrinos. Their model is capable of
reproducing the expected (main) features of neutrino emission and, in par-
ticular, it includes an initial phase of intense luminosity. This phase, called
accretion, is the crucial ingredient for theories that attempt to explain the
explosion of the star, based on the “delayed scenario” [14, 15]–see [16] for a
review. As we will show in the following, this phase is the theoretical ingredi-
ent that allowed to obtain the comparably strong limit on the mass recalled
previously.

There are two specific considerations that make a reanalysis necessary:
1) it has been noted that the likelihood function adopted by Lamb and Loredo
has a statistical bias [17]; 2) in addition, an improved model for the emission
of neutrinos (which overcomes certain shortcomings and involves significant
changes in the astrophysical parameters resulting from SN1987A data anal-
ysis) has been recently introduced in the scientific literature [18, 19].
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2.2. Procedure of analysis

The method used in this paper to investigate the neutrino mass is based
on punctual comparison between the features of the collected data [5, 6, 7]
and the expectations resulting from a specific theoretical model [18, 19].
This model describes the expected flux of electron antineutrinos, taking into
account that the main reaction leading to observable events is ν̄ep → e+n
both in water Cherenkov than in scintillator detectors.

We assume that the shape of the flux is known up to nine free parameters
that are obtained fitting the data. Let us explain their meaning: The first
six parameters belong to two emission phases (accretion and cooling) and are
used to take into account the large astrophysical uncertainties. Each emission
phase is characterized by its intensity, its duration and the average energy
of the emitted neutrinos. The three parameters of the accretion phase are
the initial mass (Ma), the time scale (τa) and the initial temperature (Ta);
those of the cooling phase are the radius (Rc), the time scale (τc) and the
initial temperature (Tc). For details and analytical expressions see [18, 19].
The other three parameters are called “offset times”; each one of them is the
absolute delay of the first observed event in each detector, more explicitly
described below. We need to include three different offset times because the
clocks of Kamiokande-II, IMB and Baksan were not synchronized [5, 7].

Now we include the effects of neutrino mass. The antineutrino flux,
Φν̄e(t, Eν), is a parametric function that depends on the time of emission
(t) and on the energy of the antineutrino (Eν), see in particular Eqs. 10, 13,
19 and 20 in reference [18]. Of course this function must vanish for t ≤ 0.
Using the same notation of ref. [18] (see in particular Eq. 8 there) we can
write the emission time for the i-th event as follow:

ti = δti + toff −∆ti. (1)

The first term in the right hand side, δti, is the relative time between the
i-th and the first observed event in the considered detector, which is known
directly from the data without significant error. The second one, toff, is
the offset time parameter which is the sum of the emission time of the first
neutrino detected, t1, and of its delay due to the velocity of propagation,
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∆t1, namely toff = t1 + ∆t1. Finally, the last term,

∆ti =
D

2c

(
mν

Eν,i

)2

, (2)

is the delay of the neutrino due to a non-zero mass [3], where D is the
distance of propagation. The neutrino energy Eν,i of the i-th event can be
reconstructed from the measured energy of the positron, Ei, which is known
up to its error, δEi. The numerical value of the delay when D = 50 kpc (as
for SN1987A), Eν = 10 MeV (a typical value) and mν = 10 eV is ∆t = 2.6
s, which is five times longer than the duration of the phase of accretion.

The scope of the statistical analysis is to extract from the fit toff and mν

at the same time. It is quite evident that these two terms work in opposite
sense, see Eq. (1) and recall the condition ti ≥ 0. This makes the extraction
of these two parameters more difficult, especially in the case of SN1987A,
when the number of observed events is small. We adopt the same likelihood
function L constructed in [18] including in it the expression for the times
ti given in Eq. (1). This is a function of 10 parameters, namely the nine
parameters previously discussed plus the neutrino mass.

2.3. Results and remarks

Using the definition L = exp(−χ2/2) we obtain the function that allows
us to estimate the neutrino mass

∆χ2(mν) = χ2(mν)− χ2
best fit, (3)

This function is plotted in Fig. 1. The two continuous curves show the results
of SN1987A data analysis. The thick line is obtained, for any fixed value of
the neutrino mass, maximizing the likelihood with respect to the other 9
free parameters. The curve is somewhat bumpy, reflecting the presence of
multiple maxima that compete in the likelihood with similar height. The
existence of these maxima has been already remarked in [18] and causes nu-
merical difficulties. To avoid these problems we bound the mass of accreting
material Ma, which regulates the intensity of neutrinos emission in the ac-
cretion phase, to be lower than 0.6 M� [4, 18]. The thin line, instead, arises
when the 6 astrophysical parameters are set to the best-fit values obtained
in [18]. In this case only the 3 offset times are allowed to fluctuate freely
to maximize the likelihood. The comparison of the two curves reveals some
interesting features:
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Figure 1: The curves show various ∆χ2(mν) obtained by analyzing supernova neu-
trino data as a function of the neutrino mass. The two continuous curves are
obtained from SN1987A data; the thick one includes the astrophysical uncertain-
ties, the thin one assumes instead that the astrophysical parameters of neutrino
emission are known. For comparison, we include the result of the analysis of sim-
ulated data set, collected in a detector a la Super-Kamiokande (SK), for a future
supernova exploding at 10 kpc from us (leftmost dashed curve). This curve, dis-
cussed in detail later, illustrates the ultimate sensitivity of the method.

• In spite of the really different assumptions, namely the complete knowl-
edge of the supernova ν̄e emitted flux or only of its shape (up to 6
parameters), the two curves are quite similar. This shows that the
large uncertainties in the astrophysics of the emission are not the main
limitation in this type of analysis.

• In both curves, the minimum is located at mν 6= 0, however, this
is not statistically significant.1 This is linked to a clustering of the
events #1,2,4,6 of Kamiokande-II for mν ∼ 3.5 eV, already remarked
by several authors, e.g., [21].

From our statistical analysis, we obtain as limit on neutrino mass from
SN1987A data the value

mν < 5.8 eV at 95% CL. (4)

1We note that the presentation using mν rather than m2
ν–which is the quantity that is

actually probed, see Eq. (1)–emphasizes somewhat artificially the region close to mν ∼ 0.
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As already noted, this does not change much if we assume that the astro-
physics of the emission is perfectly known; in this case, in fact, the limit
becomes mν < 5.6 eV at 95% CL: see Fig. 1.

From Eqs. (1) and (2) and from the previous discussion, it is quite evident
that the information on the presence of the neutrino mass is mainly contained
in the earlier events and, in particular, in those with low energy. These
considerations select, as the most relevant data, the six events collected by
Kamiokande-II in the first second [5], that incidentally, are also the most
relevant ones to determine the presence of an accretion phase [4, 18].

3. The sensitivity of the method

These findings led us to the question of evaluating the ultimate sensi-
tivity of this method for a future galactic supernova event. For this aim,
we will analyze in this section simulated data, extracted from the generator
described in [19] upgraded to describe the propagation of massive neutrinos,
focussing mostly on the possibilities of the existing detectors. We will in-
troduce and critically examine the assumptions used to derive the bound,
comment on their statistical meaning, and overview the prospects offered by
future detectors.

3.1. Statistical procedure

The expected counting rate of the signal is a function of the emission
time t, neutrino energy Eν , detector mass Md, distance of the supernova D
and of the astrophysical parameters that describe the electron antineutrino
emission, namely

R(t, Eν) = 6.7× 1031 Md

1 kton
σν̄ep(Eν)Φ̃ν̄e(t, Eν)ε(Ee+), (5)

that depends on the supernova distance through the electron antineutrino
flux, i.e., Φν̄e ∝ 1/D2. We will consider a SN exploding at a distance of
D = 10 kpc, typical of a galactic event [22, 23]. Here, σν̄ep(Eν) is the cross
section of the interaction process [24]; the function ε(Ee+) is the detector
efficiency that we set to 98% above a threshold of 6.5 MeV; we approximate
Ee = Eν −∆ with ∆ = 1.293 MeV.
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Figure 2: Positron energy versus the emission time for two samples of simulated
events for Super-Kamiokande detector. The neutrino mass is set to zero in the left
panel and to the bound from tritium decay, mν = 2 eV in the right one. The green
line is the threshold of the detector and the red curve is the expected delay due to
the neutrino mass, Eq.(2).

Finally, Φ̃ν̄e(t, Eν) in Eq. (5) is the same electron antineutrinos flux used
previously, Φν̄e(t, Eν), improved taking into account the finite rising time of
the signal. This is described by an exponential function characterized by
a new time scale, τr > 30 ms, that we treat as a new parameter of the
analysis [19]. With future large statistics we will be able to probe such a
small time structure, as argued in [19]. Thus, in our analysis this function
depends on 7 astrophysical parameters.

Each event extracted from this function is characterized by its relative
detection time δti, its positron energy, Ei, and the error on this energy given
by the function δEi/Ei = 0.023 + 0.41

√
MeV/Ei [25]. We generate the data

using the Monte Carlo described in [19] and take into account the effect of
neutrino mass by assigning a time delay to each generated event, as pre-
scribed by Eq. (2). Fig. 2 shows two extractions, magnified in the region of
the first 200 ms of data taking. Their comparison shows clearly the region
where the effect of neutrino mass is most relevant, namely the one with the
lowest energies and the smaller detection times.

We studied ten simulated data sets for a detector with a fiducial mass
of MSK = 22.5 kton as the Super-Kamiokande detector, which corresponds
to about 4482 events on average. We also considered two different detector
masses: Md = MSK/16, with an average number of events of 280, similar to
the ones expected on LVD detector, and also Md = MSK/256, corresponding
to an average number of 18 expected events, which resembles the statistics
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collected for SN1987A.

We calculate the bound on the mass by assuming that:

• The astrophysical parameters are precisely known; we use those in
ref. [18], that agree with the expectations of a standard collapse and
set τr = 50 ms.

• The offset time is known without significant error (more discussion
later).

These are very optimistic assumptions as appropriate to evaluate the ultimate
sensitivity of the method. We discuss the weight of these assumptions in the
following and their implications on the understanding of SN1987A results.

We note in passing that the neutrino mass enters the likelihood through
Eq. (2), in the form m2

νD; moreover, the interaction rate in Eq. (5) depends
on the combination Md/D

2: thus, the likelihood obeys the exact scaling law

L(Md, D,mν) = L(α2Md, αD,mν/
√
α). (6)

This means, e.g., that once we know the value of the neutrino mass bound
for Md = MSK/16, we get the bound for Md = MSK and D = 40 kpc simply
halving it. From here, we also conclude that the bound on the mass can
be written as mν < f(Md/D

2)/ 4
√
Md, where the function f depends on the

selected statistical level on the adopted test and on the specific data set.

3.2. Results and discussion

The 95% CL neutrino mass bounds, obtained with fixed astrophysical
parameters, are reported in Fig. 3 for each analyzed data set.

The case of low statistics and SN1987A. As first step, we discuss the dia-
monds points corresponding to a detector with mass Md = MSK/256. The
average number of events in this case is very similar to the one observed for
SN1987A, so we can explore the fluctuations due to the features of the data
in a small data set. The values of the neutrino mass bound fall in the interval
of 1.6 eV < mν < 6.4 eV showing that each particular data set contains very
different information about the neutrino mass presence.

8



æ
æ

æ

æ

ææ

æ

æ

æ

æ

à
à
à
à

à

à
àà

à

à

ì

ì

ì

ìì

ì

ì

ì

ì

ì

10 30 100 300 1000 3000
Nev

0.5

1.0

2.5

5.0

10.

mΝ@eVD

Figure 3: The dots represent the 95% CL bounds on neutrino mass from the analysis
of simulated data; for each of the three value of the average numbers of expected
events we extracted and analyzed 10 simulated data set. Circles (dots in the right),
squares (center) and diamonds (left) correspond to the results in detectors with
masses Md = MSK , MSK/16 and MSK/256, respectively. The continuous and
dashed curves describe the bounds given by Eq. (10) and discussed in the text.

We used these simulations to investigate the weight of the various as-
sumptions of the analysis on the resulting bound. For a typical simulated
data set, we analyzed the data using three different procedures:

1. We suppose to know all the astrophysical parameters without errors
and also the offset time. In other words, the only free parameter of
the likelihood is the neutrino mass. The resulting 95% CL on neutrino
mass in this case is: mν < 4.4 eV.

2. We suppose that the offset time is unknown, whereas the 7 astrophysical
parameters are known from the theory. Namely, the likelihood is a
function of the neutrino mass and of the offset time. The resulting
95% CL on neutrino mass in this case is: mν < 7.2 eV.

3. Finally, we suppose that we do not know any of the 9 parameters.
Namely, only the shape of the signal in known from the theory and
all parameters have to be estimated from the likelihood analysis. The
resulting 95% CL on neutrino mass in this case is: mν < 7.4 eV.

This study shows that the knowledge of the offset time significantly affects
the value of the mass bound. Instead the comparison of the last two results
confirms that the knowledge of the astrophysical parameters is less critical
for the analysis, in agreement with what we found for SN1987A data analysis.
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We are ready for the comparison with the SN1987A results. This is
possible using the scaling relation of Eq. (6). Using α = 5, we translate the
range 1.6 − 6.4 eV in the range 0.7 eV < mν < 2.9 eV when D = 50 kpc
and for a detector mass Md 'MKII . For a fair comparison, we still need to
take into account that the offset times and the astrophysical parameters are
unknown in SN1987A analysis. So, comparing mν < 4.4 eV and mν < 7.4
eV, we multiply this range by the factor 7.4/4.4 obtaining 1.2 eV < mν <
4.9 eV. The bound from SN1987A, mν < 5.8 eV, is not far from this range.
The residual difference can be attributed to the better performances of the
simulated detector. In fact, the improved efficiency implies that more events
are collected at low energies; moreover, any misidentification of events is
forbidden by constructions, due to the postulated absence of background
events above the detection threshold.

The case of high statistics and the ultimate upper limit. Now we discuss the
results for high statistic, i.e., the case when Md = MSK , chosen to represent
the observation of a future galactic supernova event. A typical simulated
data set is the one shown in the left panel of Fig. 2; the resulting ∆χ2 is the
one given by the dashed line of Fig. 1, that implies:

mν < 0.8 eV at 95% CL (7)

This result confirms the possibility to probe the sub-eV region for neutrino
mass using SNe neutrinos, in agreement with the finding of Nardi and Zulu-
aga [8, 9, 10]. Also it would be closer to the sensitivity of about 0.2 eV that
will be probed by the Katrin experiment [20].

An inspection of Fig. 3 shows also quite clearly that the bounds fluctuate
strongly with the individual simulation, even for high statistics. This can be
explained as follows. The emission time of each signal event is subject to the
condition ti > 0 (see Eq. (1)), which implies the condition on the neutrino
mass:

mν < m∗
ν = Mini

{
Eν,i

√
toff + δti
D/(2c)

}
. (8)

When we replace Eν,i = Ei+ ∆, namely, neglecting the error in the measure-
ment of the positron energy, we obtain the bound m∗

ν on the neutrino mass
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Nev toff(ms) mν(eV) m∗
ν(eV)

4328 4.9 0.78 0.94
4479 2.9 0.82 0.68
4497 2.9 0.72 0.76
4473 2.9 1.10 1.10
4492 4.6 0.84 0.77
4464 2.9 0.82 0.73
4488 3.5 0.90 0.72
4412 2.6 0.82 0.65
4412 1.2 0.59 0.52
4399 3.0 1.01 0.77

Table 1: Number of events in Super-Kamiokande, offset time, statistical bound on
the neutrino mass, and neutrino mass bound from Eq. (8) in 10 simulations.

directly from the data. Typically, the minimum in Eq. (8) corresponds to
the first (or the first few) event(s) of the data set; compare, e.g., with Fig. 2.
This means that the role of the fluctuations is very important, also for large
number of detected events. In other words, the bound m∗

ν depends strongly
on the specific data set. We compare this bound with the one obtained by
the full analysis of the likelihood function in Tab. 1. Within 25% the two
bounds are in agreement. This supports the idea that, in this type of analysis
where toff is known, the information on the neutrino mass is mostly contained
in the first few events, rather than somewhat distributed in the data set.

An alternative estimator. For comparison, we present also other estimators of
neutrino masses that, instead, depend on relatively large numbers of events.
We construct them by imposing that the error on a typical time scale of
neutrino emission, τ , is larger than the average delay of the events 〈∆t〉:

〈∆t〉 < nσ ·
τ√
N − 1

, (9)

where nσ is the required sensitivity (the number of sigmas); N is the number
of detected events in the assigned time scale τ (N � 1 since we want to de-
termine experimentally the phase of emission); 〈∆t〉, in turn, will be derived
from Eq. (2) replacing the neutrino energy with its average value 〈Eν〉. For
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a similar proposal, see [26]. Setting nσ = 2, we get the following bound on
the neutrino mass:

mν <
2〈Eν〉

4
√
N − 1

√
τ

D/c
(10)

We use the value 〈Eν〉 = 13 MeV and D = 10 kpc for numerical purposes and
consider two concrete times scales of emission: the one of the accretion phase,
τ = τa = 0.55 s, which corresponds to N = 0.4Nev; the one of the rising
function, τ = τr = 50 ms, which corresponds instead to N = Nev/40. These
lead to the continuous curve and to the dashed curve of Fig. 3, respectively.
As soon the expected number of events is large enough (N � 1), we get
a stabler bound on the neutrino mass.2 However, Fig. 3 shows clearly that
these are very conservative upper bounds, when compared with the true
bounds from the full likelihood analysis.

The gravity wave trigger and its limitations. An important remark is in or-
der. We evaluated the ultimate sensitivity of the method with the existing
neutrino detectors, assuming that the offset time was known without signif-
icant error. How can we achieve this? In principle, we could profit of the
detection of gravity waves, assuming they will be seen. However, two addi-
tional conditions should be fulfilled: a precise location of the supernova in
the sky is needed; the interval of time between the onsets of gravitational
and neutrino emissions should be known. The first condition is needed if
the detectors of gravity waves and of neutrinos are not in the same location.
Elastic scattering neutrino events can provide such an information, but with
a uncertainty of several ms [19], while an astronomical identification would
make this error negligible. The second condition has at present an associated
theoretical 1σ error of about 1 ms [19], which is already limiting the sensitiv-
ity of the existing neutrino detectors: see Tab. 1, or consider that IceCUBE
uses 2 ms time window. In summary, the key condition for a successful
search for neutrino mass by this method is the possibility to implement very
precise measurements of the time; however, the previous discussion showed
the difficulties to realistically surpass the millisecond time scale. It will be

2Note that in this limit and considering that the number of events scales as 1/D2, the
bound in Eq. (10) is independent from the distance. The same occurs with the bound in
Eq. (8) if toff + δti ∝ D/

√
Md, that is satisfied for an initial linear rise of the interaction

rate, R(t) ' ξtMd/D
2 (which is the quantity that determines the time of the events).
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important to take into account these considerations for an analysis of future
real data, for instance, taking into account the errors on the measurement of
time. Another way to go beyond these limitations would be to rely on larger
samples of data; this will be possible by future detectors, which leads us to
the last point of the discussion.

Future prospects. Finally, we comment on the prospects to improve the reach
of this method to investigate neutrino masses. A straightforward possibility
would be to use a bigger detector, say of megaton mass; note incidentally that
this is mentioned already in the paper of Zapsepin [3]. For example, with an
increase of the number of events expected in Super-Kamiokande (22.5 kton
fiducial volume) by a factor of ∼ 20 one could expect an improvement on m2

ν

as the inverse of the square root of this number, thus reaching mν ≤ 0.4 eV
in the most optimistic case. If instead we use the stabler bound of Eq. (10),
we find again a value close to the one in Eq. (7).

An alternative possibility would be to identify the very short burst from
early neutronization; see [27] for an earlier discussion. Its detection could
permit us to investigate neutrino masses of similar size. In the standard sce-
nario of neutrino emission, however, this burst leads to a very small fraction
of the total number of events, which leads us again to consider a megaton
water Cherenkov detector. In fact, the elastic scattering events are 1/35 of
the total sample; the burst comprises some 1/20 of the total energy released
in νe’s, which, when converted in νµ,τ ’s by oscillations, have a cross section
6.5 times smaller. Thus, a conservative estimation of the event fraction from
the neutronization burst is 1/4500, which means about N =20 (=1) events
in 450 (22.5) kton of fiducial volume from a supernova at nominal distance of
10 kpc. If used in Eq. (10) with τ = 3 ms, this yields mν ≤ 0.7 eV, which is
again similar to the bound of Eq. (10), but possibly more stable and without
resorting to the gravity wave trigger.3

3For a more precise bound one should keep into account that the elastic scattering
reaction νe→ νe does not allow to reconstruct the neutrino energy precisely.
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4. Summary

The present work, part of a series of papers on supernova neutrinos [17,
18, 19, 22, 24], was devoted to derive and discuss the bound on neutrino
mass from supernova electron antineutrinos. Our bound, Eq. (4), agrees well
with the one obtained by Lamb and Loredo [4], despite the large number of
differences in the procedures of analysis.

We argued that the result from SN1987A is relatively insensitive to the
details of the emission model, as soon as the emission resembles the expec-
tations of the standard scenario, that includes an initial phase of intense
antineutrino luminosity. We showed that the knowledge of the time when
neutrino emission begins (‘offset time’) has, instead, a significant impact on
the bound that the existing detectors can obtain.

We derived the ultimate sensitivity that can be provided by supernova
neutrinos with existing detectors. We showed that on average it lies in the in-
teresting sub-eV region. However the key role of the first few detected events
also implies a large fluctuation on the mass bounds. A crucial requirement
is the need to reach very precise measurements of the offset time; we argued
that the detection of a gravity wave burst could permit to reach the sub-eV
sensitivity with the existing neutrino detectors. We briefly commented on the
prospect to improve the bound using future, megaton class, water Cherenkov
detectors.
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