LNGS,/TC-01/06

June 2006

V-DAS (A Versatile Data Acquisition Software)
The user interfaces

M. Di Paolo Emilio®P, S. Stalio?

INFN - Laboratori Nazionali del Gran Sasso

INFN - Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali del Gran Sasso

LNGS,/TC-01,/06

June 2006

V-DAS (A Versatile Data Acquisition Software)
The user interfaces

M. Di Paolo Emilioa’b, S. Stalio®

@ INFN, Laboratori Nazionali Del Gran Sasso, Assergi (AQ) - Italy
b Dipartimento di Fisica, Universita’ degli Studi dell’Aquila - Italy

Abstract

A new data acquisition system (DAQ) named V-DAS and based on the VME
bus is presented. The system has been developed for the data acquisition for the
gravitational antennas belong of the ROG group. The system is supported by a
text based user interface (TUI) and a graphic user interface (GUI), both allowing
for an easy management of the DAQ. This document will describe in depth the two
user interfaces.

1 Introduction

V-DAS is a software written using the C language for the management of VME based
DAQ systems. The VME bus (Versa Module Europa) is a flexible open-ended bus system
based on the Eurocard standard. It was introduced by Motorola, Phillips, Thompson,
and Mostek in 1981. VME bus was intended to be a flexible environment supporting a
variety of computing intensive tasks, and is now a very popular protocol in the computer
industry. It is defined by the IEEE 1014-1987 standard. The system is modular and
follows the Eurocard standard. VME card cages contain 21 slots, the first of which must
be used as a crate manager.

The idea that led us to the realization of V-DAS (see figure 1) has been the necessity

of creating, starting from the vme_universe drivers and libraries for the VME bus and the
standard C libraries, a new set of functions and structures that assures the easy manage-
ment of VME based DAQ systems (figure 1).
V-DAS has been originally developed for the acquisition of data generated by the gravita-
tional antennas (Nautilus and Explorer) belonging to the ROG (WWW.Inf.infn.it/ROG)
group. The system architecture relies on a VME crate managed by an Intel-based crate
controller running the Linux operating system.

2 V-DAS architecture

V-DAS is composed of 5 subsystems, each having a specific function:

e VME bus interface: implements the communication with the boards mounted in
the VME crate.

e Data writing: takes care of writing acquired data on structured data files.

e Configuration file interpreter: reads and parses the configuration file and sets up
the DAQ.

e Error handler: manages errors that may show up during data taking (network prob-
lems, VME bus errors, disk access problems,; ...)

e Network data transfer manager: takes care of transferring acquired data from the
VME crate manager to an optional data storage host via an Ethernet connection.

3 The user interfaces

V-DAS has two user interfaces: a text based user interface (TUI) consisting in an ASCII
configuration file and and a graphic user interface (GUI) available by means of any Web
browser.

VME libraries Standard C libraries

N

Functions and structures

d

V-DAS (Group of functions and structures: function1(...), function2(...),....
struct1{...}, struct2{...}.....)

ey

Main program

L Calls to the V-DAS functions

Figure 1: ”Software structure”

Both interfaces permit DAQ management and customization without the need of recom-
piling the sources, thus granting full acquistion control also to inexperienced programmers.
The configuration file is written in a high-level language (meta language) and is easily
modified by the operator. V-DAS takes care of reading and parsing it and modifies the
DAQ setup accordingly.

The GUI works at a higher level with respect to the ASCII configuration file and helps
the operator in compiling the configuration file and in controlling the acquisition. The
use of the Web interface does not require any knowledge of the configuration file sintax
and avoids “grammatical” errors. It is up to the operator to choose the TUI or the GUI
when modifying the DAQ setup.

3.1 The configuration file

V-DAS reads all the DAQ parameters from a configuration file (See figure 3 and 2). The
configuration file is a text file organized in sections. Each section is delimited by a couple
of strings; one is found at the beginning of the section, the other at its ending (See figure
4).

The configuration file sections and their delimiter strings are defined in the source code
and can not be changed arbitrarily. Sections can contain three types of data: simple
lists of objects, lists of objects characterized by a numerical parameter, lists of objects
characterized by a numerical or textual parameter. Each section can contain a single type
of data.

7‘

@,

(!“ 4\

Web interface (GUI)

1T

Configuration file (TUI)

1T

V-DAS

Figure 2: ”V-DAS”

Comments in the configuration file begin with the ”//” string and go to the end of the
line (exactly as in the C++ programming language) and can be placed anywhere in the file.

In V-DAS the sequence of sections is organized in two parts: the first is declaratory,

the second is executive.
In the declaratory part the elements of the acquisition are defined, ordered by level of
complexity. At lower level we find the VME board registers (components), the definition
of groups of registers (equipments) follow, at higher level groups of equipments (triggers)
are created and filled.
In the executive part, the periodicity of each trigger is defined. When a trigger is encoun-
tered all the components belonging to the trigger equipments are executed.

The first section of the configuration deals with global parameters needed for the acqui-
sition management (antenna name, type of run, data directory...).
This section is delimited by the following strings:

START_SECTION_PARAMETERS

END_SECTION_PARAMETERS

The contents of this section (a list of objects characterized by a numerical or textual
parameter) will have to match the following syntax:

namel=valuel

® _

il

User interface

I

V-DAS

Figure 3: "The configuration file”

Parameters section

=

Component section

=

Equipment section

=

Trigger section

=

Setup section
(trigger)

e

Lists of trigger to execute sequentially. All are
characterized by a parameter.

Figure 4: ”Configuration file structure”

name2=value?2
name3=value3

In the attached document (Appendix A) the list of parameters that need to be present in
this section is found.
The VME section is delimited by the following strings:

START_SECTION_VME

END_SECTION_VME

This section is composed of four subsections:

3.1.1 The component section

The components subsection is delimited by the following strings:

START_COMPONENT_LIST

END_COMPONENT_LIST

In this section all the components used in the DAQ system will be described according to
this template:

STARTCOMP name
module=val
register=val
dw=val

am=val
base=val
offset=val
size=val
bus=val
action=val
value=val
value_expected=val
END_COMP

The string name is chosen arbitrarily and represents the component name. Following is
the meaning of the other variables:

e module=val

the user will define the name of the VME board to which the register belongs.

e register=val

This is an arbitrary name for the register.

dw=val

Width of the data word (8, 16, 32 or 64 bits). Accepted values are: VME_DS,
VME_D16, VME_D32, VME_D64.

am=val

Access type to the VME bus. The address modifier for this register will have to be

inserted here.

base=val

The VME board base address (hexadecimal).

offset=val

The offset of the register address with respect to the base address (hexadecimal).
size=val
Size in words of data stored in the register (usually 1 except for DMA registers).

bus=val

The incremental number of the VME crate to which the crate controller belongs.

value=val

The value to be written in the register (only used in write operations).

value_expected=val

The value that we expect to read from a register (only used in certain read opera-
tions, described later).

action=val

The type of operation to be performed on the register (read, write, ...).

Legal values for the action variable are:

read: read data register (or memory area).
write: write data (found on the value field) on the selected register.

read_verify: read data register and compare the result with the value of the value_expected
parameter. An error flag will be raised if the two numbers are different.

read_loop: repeat readout of the data register until the result is equal to the value
of the value_expected parameter.

3.1.2 The equipment section

The next subsection is the equipment subsection. Its delimiters are the following strings:

START_EQUIPMENT_LIST

END_EQUIPMENT_LIST

Here all the equipments that are used during DAQ must be defined. Each equipment must
be declared this way:

STARTEQP equipmentl
componentl
component?2

ENDEQP
Executing equipment equipmentl means sequentially executing the operations defined
by the action field of each component belonging to the equipment.

3.1.3 The trigger section
The trigger subsection is delimited by the following strings:

START_TRIGGER_LIST

END_TRIGGER_LIST
Triggers are defined like this:

STARTTRIG triggerl
equipmentl
equipment?2

Executing trigger triggerl means sequentially executing the equipments listed inside the
trigger itself.

3.1.4 The setup section

The last subsection belonging to the VME section deals with the DAQ setup. The delim-
iters strings are:

START_ACQ_SETUP_TRIG

END_ACQ_SETUP_TRIG

This section needs to be filled with the names of the triggers to be executed.

START_ACQ_SETUP_TRIG
triggerl valpar
trigger2 valpar

END_ACQ_SETUP_TRIG

The valpar is an integer that controls the execution period of each trigger. If valpar is
-1 the trigger is executed only once at the beginning of data taking. If valpar is 0 the
trigger is executed whenever possible. If valpar has a positive value, this value represents
the period (in seconds) of the trigger execution.

3.2 The Web interface

3.2.1 Interface structure

The Web interface has been realized by means of the HTML and PHP programming
languages (figure 6, 5, 7, 8 and 9)). It requires running a Web server authorized to modify
the V-DAS configuration file. Its main goals are the compilation of the configuration file
and the management of the DAQ. The Web interface also makes possible browsing the
configuration file sections.

3.2.2 Interface operation

We will give a step by step description of the operations to be performed in order to
correctly fill a configuration file using the Web interface. All the operations described
below are accessed via hypertext links found on the menu area on the left side of the main
HTML page.

First of all an existing configuration file can be loaded. In this case its contents will be
shown in a read-only text area. If no configuration file is loaded a default template will
be used.

In order to fill the configuration file the menu section will have to be followed sequentially.
First we can insert any comment describing the acquisition setup. This is done by clicking
on the “Comments” link.

Then we can follow the “Parameters” link in order to assign values to general DAQ pa-
rameters and, if needed, comments related to this area of the configuration file.

We can now insert, delete or modify components. This is done by clicking on the “Com-
ponents” link.

Components need to be grouped in equipments. The “Equipments” link allows us to
operate on equipments.

Control on triggers is possible under the “Triggers” link.

The “Setup” link allows us to create a sequential list of the triggers to be executed during
data taking. Each trigger is characterized by the valpar parameter described before.
The configuration file generated by this procedure can now be saved (“Save” link) and
DAQ is ready to start.

Figure 5: ”Structure of the Web interface main page”

10

)

f

i

Web interface

1T

configuration file

1T

V-DAS

Figure 6: ”The Web interface: V-DAS”

3.2.3 DAQ control via the Web interface

DAQ control (start, stop) can be performed via the web interface. The “Control” link
gives access to a page where the “Start” and “Stop” buttons can be used for DAQ control
and the running configuration may be browsed (see figure 10).

11

Figure 7: ”Structure of the left frame of the Web Interface”

12

Figure 8: ”Structure of the right frame of the Web Interface”

13

V-DAS Pagina 1 di |

http:Avww. Ings.infin.it-mdipaclo/index 1_html 05/03/2006

Figure 9: "First Page of the Web Interface”

14

V-DaAS Pagina | di |

reg_clear_sis3800
rag_enabls_=(s3300

adc_caz_sst_butfer
adc butfer_dea

‘hitp:/wrww Ings infiiv-~mdipaclo/index html 050312006

Figure 10: ”Page of the Acquisition control”

15

Appendix A: Example of configuration file

The first part of the configuration file is composed of comments that describe the
experimental setup and the DAQ system:

//This is a comment

//Lines cannot exceed 400 characters

//Start with module definition of the VME Components
//frequency in KHz

The first section we meet is the parameter section:

START_SECTION_PARAMETERS

//host name and communication ports
VME_HOST=rogdaqO1

DATA_PORT=10000

DATA_HOST=rogdaq
CONTROL_PORT_1=10001
CONTROL_PORT_2=10002
PID_FILE=/tmp/rogdaq.pid
SELECT_TIMEOUT=2

//data file parameters
DATA_DIR=/tmp/
MAX_FILE_SIZE=100000000
//DATA_FILE=rogs
ADC_POLL_INTERVAL=10000
ADC_BUFFER_WORDS=65536
CHANNEL_FAST_ADC_1=8
CHANNEL_FAST_ADC_2=1
CHANNEL_SLOW_ADC_1=1
CHANNEL_SLOW_ADC_2=21
ACQ_MODE=calibration
ANTENNA=sfera
MAN_END_RUN=0
comment=first run

//daq parameters
DATA_BUFFERS=80

//running modes

DEBUG=0
DATA_CHECK=0

16

//definitions for interface.h

END_SECTION_PARAMETERS

The following section is the VME section. It is composed of 5 subsections. The first
subsection is the component subsection:

START_SECTION_VME
START_COMPONENT_LIST

startcomp ioreg_verify_1
module=V9o77
register=register_dummy
dw=VME_D16

am=VME_A24UD
base=0xd00000
offset=0x2a

size=1

bus=1

action=write
value=0xdead
expected_value=0
endcomp

startcomp ioreg_verify_2
module=V977
register=register_dummy
dw=VME_D16

am=VME_A24UD

base=0xd00000
offset=0x2a

size=1

bus=1
action=read_verify
value=0
expected_value=0Oxdead
endcomp

startcomp start_acq
module=V977
register=singlehit
dw=VME_D16
am=VME_A24UD

17

base=0xd00000
offset=0x16

size=1

bus=1
action=read_loop
value=
expected_value=0x1
endcomp

startcomp scaler_verify
module=SIS3800
register=MIR
dw=VME_D32
am=VME_A24UD
base=0xe00000
offset=0x04

size=1

bus=1
action=read_verify
value=0
expected_value=0x38001000
endcomp

startcomp reset_reg_sis3800
module=sis3800
register=reset_reg
dw=VME_D32
am=VME_A24UD
base=0xe00000
offset=0x60

size=1

bus=1

action=write
value=0x1
expected_value=0x0
endcomp

startcomp set_csr_sis3800
module=sis3800
register=csr
dw=VME_D32
am=VME_A24UD
base=0xe00000
offset=0x0

size=1

bus=1

18

action=write

value=0xC

endcomp

startcomp read_counter_scaler
module=sis3800
register=dati
dw=VME_D32
am=VME_A24UD
base=0xe00000
offset=0x280

size=1

bus=1

action=read_loop
expected_value=0x99999
value=0x0

endcomp

startcomp reg_clear_sis3800
module=sis3800
register=clear
dw=VME_D32
am=VME_A24UD
base=0xe00000
offset=0x20

size=1

bus=1

action=write

value=0x1

endcomp

startcomp reg_enable_sis3800
module=sis3800
register=gc_enable
dw=VME_D32

am=VME_A24UD

base=0xe00000

offset=0x28

size=1

bus=1

action=write

value=0x1

endcomp

startcomp reg_control_sis3800
module=sis3800

register=csr
dw=VME_D32
am=VME_A24UD
base=0xe00000
offset=0x0

size=1

bus=1
action=read_verify
value=0x0
expected_value=0x800c
endcomp

startcomp divisore_verify_1
module=divisore
register=csr
dw=VME_D32
am=VME_A24UD
base=0x400000
offset=0x0

size=1

bus=1

action=write
value=0xba
expected_value=0
endcomp

startcomp divisore_verify_2
module=divisore
register=csr
dw=VME_D32
am=VME_A24UD
base=0x400000
offset=0x0

size=1

bus=1
action=read_verify
value=0
expected_value=0xba
endcomp

startcomp divisore_set_frequency_acq
module=divisore
register=registro_one

dw=VME_D32

am=VME_A24UD

20

base=0x400000
offset=0x0
size=1

bus=1

action=write
value=0x3e7
//value=0xd04
endcomp

startcomp divisore_set_frequency_acq_verify
module=divisore
register=registro_one
dw=VME_D32
am=VME_A24UD
base=0x400000
offset=0x0

size=1

bus=1
action=read_verify
value=0x0
expected_value=0x3e7
//expected_value=0xd04
endcomp

startcomp adc_reset
module=adc
register=csr0
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x4

size=1

bus=1

action=write
value=0x20

endcomp

startcomp adc_halt
module=adc
register=csr0
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x4

size=1

21

bus=1

action=write
value=0x40

endcomp

startcomp adc_waitready
module=adc
register=csr0
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x4

size=1

bus=1
action=read_loop
value=0x0
expected_value=0xff00
endcomp

startcomp adc_bid
module=adc
register=bid
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x0

size=1

bus=1
action=read_verify

value=0x0
expected_value=0x3d00
endcomp

startcomp adc_setramsize
module=adc
register=adc_dtobc
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x10

size=1

bus=1

action=write
value=0x11

22

//value=0xe
endcomp

startcomp adc_regmask
module=adc
register=adc_chen
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x18
size=1

bus=1
action=write
value=0xff
endcomp

startcomp adc_setmode
module=adc
register=adc_dbar
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x12
size=1

bus=1
action=write
value=0x06
endcomp

startcomp adc_triggersource
module=adc
register=adc_trig
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x0a

size=1

bus=1

action=write
value=0x4

endcomp

startcomp adc_error
module=adc
register=adc_error
dw=VME_D16

23

am=VME_A16U
base=0x8000
offset=0x22

size=1

bus=1
action=read_verify
value=0x0
expected_value=0x0
endcomp

startcomp adc_samplemode
module=adc
register=adc_csr0
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x4

size=1

bus=1

action=write
value=0x12

endcomp

startcomp adc_buffer_dma
module=adc
register=reg_dma
dw=VME_D16
am=VME_A24SB
base=0x0
offset=0x0
51ze=0x20000
//s1ze=0x80000
bus=1

action=read
value=0x3e7
endcomp

startcomp adc_csr_set_buffer
module=adc_csrl
register=adc
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x06

size=1

bus=1

24

action=read
value=0x0
endcomp

startcomp test
module=adc_csrl
register=adc
dw=VME_D16
am=VME_A16U
base=0x8000
offset=0x06

size=1

bus=1
action=read_loop
value=0x0
expected_value=0xffff
endcomp
END_COMPONENT_LIST

Following is the equipment subsection:

START_EQUIPMENT_LIST
starteqp verify
ioreg _verify_1
ioreg_verify_2
scaler_verify
ioreg_verify_1
ioreg_verify_2
scaler_verify
scaler_verify
scaler_verify
scaler_verify
scaler_verify
scaler_verify
scaler_verify
endeqp

starteqp ver
ioreg_verify_1
ioreg_verify_ 2

endeqp

starteqp VERIFICATION

25

ioreg _verify_1
ioreg_verify_2
scaler_verify
divisore_verify_1
divisore_verify_2
adc_halt
adc_reset
adc_waitready
adc_bid

endeqgp

starteqp SETUP
reset_reg_sis3800
set_csr_sis3800
reg_clear_sis3800
reg_enable_sis3800
reg_control_sis3800
divisore_set_frequency_acq
divisore_set_frequency_acq_verify
adc_setramsize

adc_regmask

adc_setmode
adc_triggersource
adc_error

adc_samplemode

start_acq

endeqp
starteqp ACQUISITION

adc_csr_set_buffer
adc_buffer_dma
endeqp
END_EQUIPMENT_LIST

This the trigger subsection:

START_TRIGGER_LIST
starttrig uno
verification

setup

endtrig

starttrig due

26

acquisition
endtrig
starttrig tre
verify

ver

endtrig
END_TRIGGER_LIST

The last subsection is the setup subsection:

START_ACQ_SETUP_TRIG

uno -1

due 0

tre 10
END_ACQ_SETUP_TRIG
END_SECTION_VME

References

[1] Tesi di Laurea: ROG. Un esperimento per la Rivelzione delle Onde Gravitazionali.
Il nuovo sistema di acquisizione, M. Di Paolo Emilio A.A. 2004,/2005

[2] Description and operation of the daga2 HF Acquisition System for gravitazional wave
detectors, S. D’Antonio, LNF-01/006 (IR) pubblicazioni LNF. Meth. A345 (1994)
554.

27

